Using GPS Collars to Measure Rangeland Utilization and Resilience of Livestock

John Bergeron¹, Scott Huber¹, Tracy Shane¹, Jason Karl², Melanie Hess³, Robert Washington-Allen¹, Mike Cox⁴, Andrew Hess¹

¹University of Nevada, Reno; ²University of Idaho; ³University of Nebraska-Lincoln; ⁴Nevada Department of Wildlife

Gordon Research Seminar on Quantitative Genetics and Genomics Saturday, February 11th, 2023

Challenges Facing Extensively Managed Operations

Resilience, Welfare & Productivity

Climatic Variability Necessitates Hardy Individuals

Resilience vs Robustness

Hedonic vs Eudaimonic Welfare

GPS as a Precision Livestock Farming Tool

- \$60 per unit
- Runtime of 15.4 ± 7.30 days
- Recording attempt every 10 min

Collared Sheep Summary

- 112 Collared sheep:
 - o Merino
 - Ewes: 10; Lambs: 10; Pairs: 8
 - o Merino X Rambouillet Composite
 - Ewes: 35; Lambs: 40; Pairs: 35
 - o Unknown Merino/Rambouillet
 - Ewes: 10; Lambs: 7; Pairs: 7
- Average ewe age: 5 ± 2 years
- Average lamb age: 101 ± 1 days

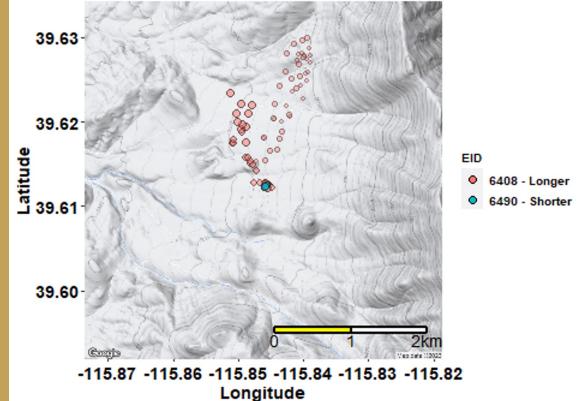
GPS Metrics & Derived Phenotypes

Raw Data:

- Longitude, Latitude
- Date
- Time

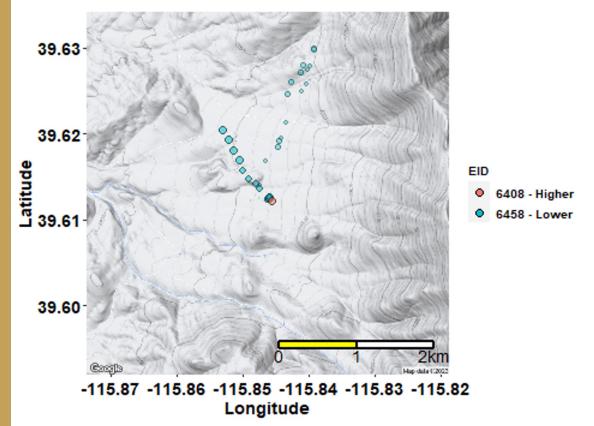
Processed Data:

- Distance
- Altitude
- Slope


Land Usage Phenotypes:

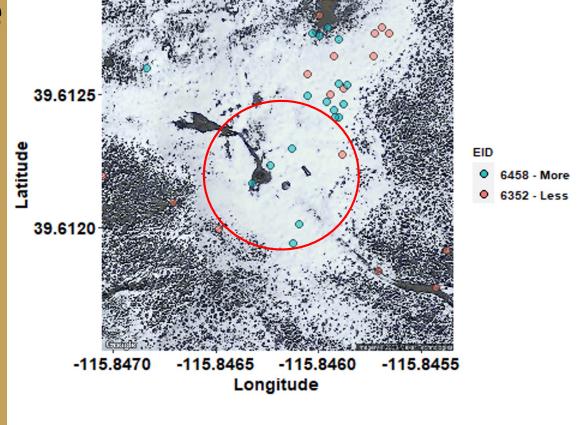
- Distance traveled
 O Speed
- Hillside usage
- Water usage
- Ewe-lamb proximity
 - Spatial social networks

Traveled


- **Energy Expenditure**
- **Nutritional Density**
- Health (lameness)
- **Daily Flock Distance**
 - 0 6277 ± 1741 m/day

Longer = 8388 m/day | Shorter = 6883 m/day

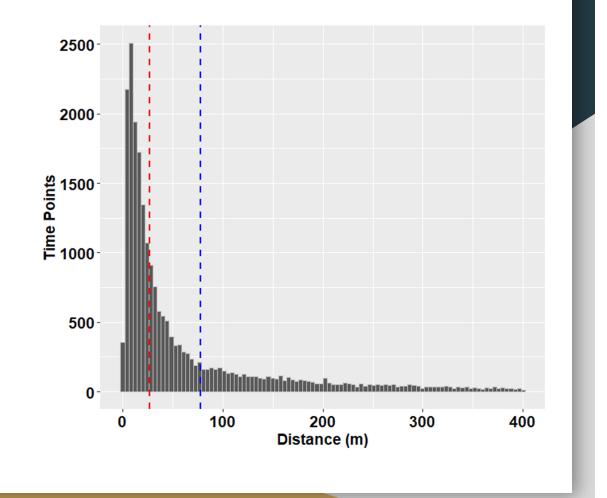
Hillside Usage


- Climbers
 - Higher nutrition plane
 - Eudaimonic well being
- Bottom Dwellers
 - May indicate heat stress
 - Energetic, physiological stress
- Hill Index Flock Score
 - O 0.03 ± 0.27 Z-Score

Higher = 0.389 Z-Score | Lower = -0.274 Z-Score

Water Usage

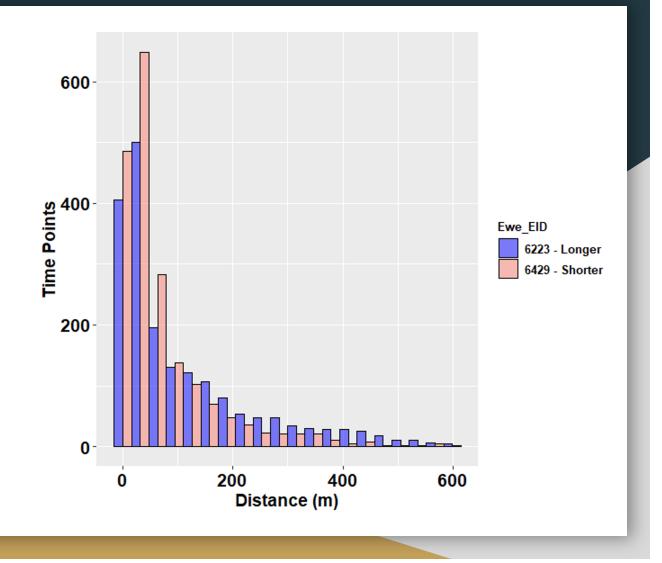
- Indicative of heat stress
- Level of hydration
- Quality of water
- Water availability
- Flock time near water
 - o 10.7 ± 5.3%



More = 16.1% | Less = 5.7%

Ewe & Lamb Paired

Distance


- Coordinates taken within 5 minutes of each other within ewe-lamb pairs
 - 33 pairs of data within time frame
- 769 ± 670 paired records per ewe
 - 149.70 ± 7.98 s mean lag time
- Mean (blue) = 78.2 m
- Median (red) = 27.1 m

Ewe Lamb Pair Variation

- Mothering ability
- Learned behaviors
- Social connectivity

Longer = 116.1 m Shorter = 70.8 m

GPS Integration with Longitudinal Data Types

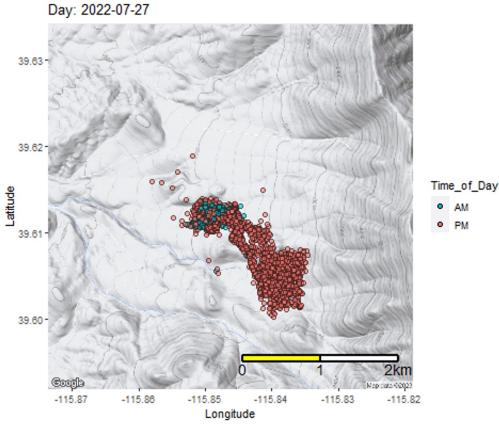
- Daily fluctuations in productivity (body weight) fundamentally describe resilience
 - Measured via walkover weigh (WoW) station
- Overlay climate data

Night Pen WoW System

- Pass through design into and out of night paddocks speed problematic
- RFID tag associates weights with individuals

Portable WoW Station

- Baited with salt, molasses
- One way in, one way out
- Decreases stress
- Solar power allows for remote use
- Set up & take down ~ 15 minutes
- Transported in pickup bed


Precision Livestock Farming Data Integration

Integration:

- WoW station data
- Climate data
- Remotely sensed vegetation
 O Grazing efficiency
 - Informs flock managem
- Informs flock management decisions

Genetic Analysis:

- Estimate heritability & repeatability
- GWAS

Thank you!

