

Cross-kingdom Interactions in the Porcine Gut: Implications in Health and Performance

Katie Lynn Summers, PhD

Animal Biosciences and Biotechnology Laboratory
USDA-ARS

Alternative Growth Promotion in Pigs

- Food production needs to increase by 70% by 2050
 - One Health
 - Gut as a research target

Weaning transition

- Weaning is a period of stress
 - Changes in environment
 - Predisposition to disease
- Antibiotics in-feed
 - Prevent weaning-associated diseases
 - Promote growth

Alternatives to Antibiotics

- In-feed antibiotics traditionally utilized in agricultural animals
 - prevent opportunistic diseases
 - promote weight gain
- Recent antibiotic ban necessitates novel strategies to enhance animal growth performance and resistance and resilience to disease

Role of Gut Microbes in Piglet Health and Disease Resilience

- In vivo
 - Bacteriome & Mycobiome
 - Temporal development
 - Microbial network interactions
 - Dietary interventions
- In vitro
 - IPEC-J2 porcine jejunal cell line
 - Biofilm competition assays
 - Comparative genomics

Why the Mycobiome?

Histamine and Growth Performance

- Elevated histamine levels at birth were associated with reduced piglet growth
- Hypothesized that fungi may be promoting mast cells to release histamine
 - Allergic disease reducing animal performance?
 - Failure to thrive?

Cultural Fecal Fungal Levels Increase After Weaning

Cultural Fecal Fungal Levels Increase After Weaning

α-diversity of the bacteriome and mycobiome

α-diversity of the bacteriome and mycobiome

* p<0.001

Organ variation of the mycobiome

Temporal development of α diversity

Temporal development of α diversity

β diversity shows distinct patterns of development

Inferred interactions

- Bacteriome mycobiome
 - genera level
- SparCC correlation network
- Node color = kingdom
- Node size proportional to mean centered-log ratio abundance

Bacterial-Fungal Interactions

Day 35 lower GI tract

K. slooffiae

positive interactions

Alloprevotella
Prevotella.2
Prevotella.9
Lactobacillus
Subdoligranulum

Aspergillus spp.

negative interactions

Alloprevotella Prevotella.2 Prevotella.9 Subdoligranulum

Kazachstania slooffiae

- Kazachstania telluris complex
 - Related to Candida species
- Most dominant post-weaning fungi
- Cells are high in nitrogen and amino acids

Kazachstania unispora(13)

Kazachstania slooffiae

- Antimicrobial resistance not seen
- In vitro growth curve lags behind pathogenic C. albicans CHN1
- Reduced pathogenicity?
 - Genome annotation

Antimicrobial	Susceptible [Y/N]	Antimicrobial Concentration	Drug class
Caspofungin	Y	0.094 ug/mL	Echinocandins
Itraconazole	Y	0.25 ug/mL	Azoles
Voriconazole	Y	0.023 ug/mL	Azoles
Fluconazole	Y	20 ug/mL	Azoles
Amphotericin B	Y	$250\mathrm{mg/mL}$	Polyenes
Flucytosine	Y	1.0 ug/mL	Pyrimidine analogue
Cefoperazone	N	100 mg/mL	3 rd generation cephalosporin
Ampicillin	N	$100\mathrm{mg/mL}$	Beta lactam

Growth Curve

Piglet mycobiome

 Kazachstania is the most dominant post-weaning fungi in piglet gut and feces

Fungal colonization

 Colonization increases over time with substantial change at weaning

Fungal colonization

- Colonization increases over time with substantial change at weaning
- In vitro, K. slooffiae creates biofilms
 - Complexity and density reduced or enhanced by bacterial supernatants

Antagonism and cooperation seen between fungi and bacteria

MYCOBIOME

Rare biosphere

α-diversity high to low

Easily manipulated

BACTERIOME

Succession pattern

α-diversity low to high

Alterations can be transient

Fungal Conclusions and Implications

- Fungal importance in pig health
 - Different temporal patterns (bacteria vs. fungi)
 - GI environmental niche effects
- Mycobiome is more malleable than bacteriome
 - Can we enhance piglet growth through supplementation with specific fungi?
 - Can we prevent common GI infections in pigs (i.e. scours) through fungal intervention?
- *K. slooffiae* is the most dominant post-weaning fungus

Enteroendocrine peptides and growth

- Enteroendocrine cells
 - Gut and pancreas

- Microbiome has demonstrated relationship with feed efficiency
- Growth rate/feed efficiency is linked to interactions between the microbiome and the enteroendocrine system
 - short chain fatty acids
 - biogenic amines
 - neuroendocrine secretions

Experimental Design

Day 1	Day 21	Day 24	Day 28	Day 35
Farrow	Wean			
Weight	Weight	Weight	Weight	Weight
Feces	Feces	Feces	Feces	Feces
Plasma	Plasma	Plasma	Plasma	Plasma

Plasma: ELISAs for hormones and peptides

Feces: 16S Illumina MiSeq

Weight: Growth rate determination

n=48

www.ars.usda.gov

Correlations between weight gain and ASV

- D21-24 has highest # of significant correlations (n=25)
- D24-28 (n=8)
- D28-35 (n=16)
- Prevotellaceae NK3B31 had greatest correlation with weight gain at early age (p < 0.001)
- Role of diet change to complex polysaccharides utilized by Prevotellaceae?

Peptides and age

- IGF-1 Insulin-like growth factor 1
- GLP-1 Glucagon-like peptide 1
- GLP-2 Glucagon-like peptide 2
- GIP Glucose-dependent insulinotropic polypeptide

Can we harness these interactions to promote disease resistance and/or growth promotion in the absence of antibiotics?

Peptides and age

- IGF-1 Insulin-like growth factor 1
- GLP-1 Glucagon-like peptide 1
- GLP-2 Glucagon-like peptide 2
- GIP Glucose-dependent insulinotropic polypeptide

Determine interactions across kingdoms (bacterial, fungal, porcine) at the microbe-lumen interface of the gut.

Overall research focus:

Determine the mechanisms
behind antibiotic-induced
animal growth and
identify potential
alternative growth
promotants in swine during
the weaning transition

Evaluate potential probiotic candidates, such as *Clostridium scin* on preweaning growth and health.

Acknowledgements

Lab Members

- Ann Arfken
- Juli Foster Frey
- Nneka Dike
- Ogechukwu Onyeachonamm
- Daniela Nieves
- Nora Carrillo

Collaborators

- Timothy Ramsay
- Cary Davies
- William Oliver
- Jim Wells
- Lea Rempel

Additional Funding

USDA National Programs AMR/ATA Grant

Current Post Doctoral Opportunities

- Immunology
- Machine Learning

katie.summers@usda.gov