DNA Stable Isotope Probing Reveals Beneficial Effects of Plant-Associated Fungi on Bacterial Communities in **Drought-Affected Soil**

Rachel Hestrin

Stockbridge School of Agriculture University of Massachusetts, Amherst rhestrin@umass.edu

Amherst

Thank you!

Lawrence Livermore Lab UC-Berkeley

Jennifer Pett-Ridge Erin Nuccio Megan Kan Rebecca Ju Jeffrey Kimbrel Peter Weber Rhona Stuart Jessica Wollard Christina Ramon Marissa Lafler Steven Blazewicz Erik Oerter Vanessa Brisson **Eric Slessarev** Gareth Trubl Dinesh Adhikari Courtney Swink Jose Liquet y Gonzalez Mary Firestone Katerina Estera-Molina Christina Fossum Ilexis Chu-Jacoby Aaron Chew Tasnim Ahmed Anne Kakouridis Alexa Nicolas

Marine Biological Lab

Dianne Newman Jared Leadbetter Scott Dawson

NCSU

Christine Hawkes Marissa Lee

Univ. Minnesota Craig See

UC-Berkeley Don Herman David Sanchez Laura Adame **Emily Kline** Madeline Moore Jack Hagen Heejung Cho Ella Sieradzki **Cynthia-Jeanette Mancilla** Melanie Rodriguez-Fuentes Alex Greenlon Nameer Baker Sarah Baker Mengting Yuan

Noble Research Institute

Prasun Ray Kelly Craven

Northern Arizona Univ.

Jamie Brown Bruce Hungate Ben Koch Megan Foley

Lawrence Berkeley Lab Amrita Bhattacharyya Kateryna Zhalnina

Can we harness microbial synergies for productive, profitable, efficient, resilient agricultural systems?

Can plant-associated fungi support profitable and resilient agricultural systems?

How do microbial interactions influence resource exchange and resilience in the hyphosphere?

How do plant-associated fungi mediate microbial response to environmental stress (drought)?

Drought is predicted to increase in severity and frequency (Dai 2012; Sherwood & Fu 2014)

Drought influences microbial structure and function

(Hueso et al 2012; Bouskill et al 2013; Acosta-Martinez et al 2014)

AMF support plant function during drought [Duan et al 1996; Morte et al 2000; Gong et al 2015]

(Strezepek et al 2010)

How do plant-associated fungi mediate microbial response to drought?

- \rightarrow Drought alters microbial structure and function
- H1: Plant-associated fungi mitigate the effect of drought on soil microbes
- H2: Microbial responses to different plant-associated fungi are distinct

How do plant-associated fungi mediate microbial response to drought?

- \rightarrow Drought alters microbial structure and function
- H1: Plant-associated fungi mitigate the effect of drought on soil microbes
- H2: Microbial responses to different plant-associated fungi are distinct

Rhizophagus irregularis

- \rightarrow Arbuscular mycorrhizal fungus
- \rightarrow Obligate symbiont
- → Reduced enzymatic repertoire

Serendipita bescii

- \rightarrow Sebacinales fungus
- \rightarrow Facultative symbiont
- → Wider enzymatic repertoire

Experimental design

"hyphosphere" 25 µm mesh

Treatments

Moisture: Replete, Limited Fungi: Uninoculated, *R. irregularis*, *S. bescii* C isotopes: ¹³CO₂, ¹²CO₂ Timepoints: 5, 8, 12 weeks Locations: Hyphosphere, Rhizosphere

How do plant-associated fungi mediate microbial response to drought?

Moderate shift in microbial community structure following 12 weeks of water limitation with/without fungal inocula

Traditional 16S rRNA gene profiling

- Water-replete
- * Water-limited

Image adapted from Ashley Campbell

How do plant-associated fungi mediate microbial response to drought?

Moisture

- Water-replete
- Water-limited

H₂¹⁸O DNA stable isotope probing elucidates fungal and moisture effects on bacterial community structure

Diversity of actively growing community is lower in water-limited soil

Plant-associated fungi help to maintain bacterial diversity in water-limited soils

Water limitation suppresses bacterial growth potential

Inoculant

Moisture

Water-replete

Plant-associated fungi support growth potential of bacteria exposed to water limitation

Inoculant

Moisture

Water-replete

Which bacterial ASVs respond to plant-associated fungi in water-limited soils?

Which bacterial ASVs respond to plant-associated fungi in water-limited soils?

Bacterial ASV

Most bacterial taxa respond positively to both fungi Different fungi elicit distinct bacterial responses

Plant-associated fungi support 'drought-susceptible' bacterial taxa in water-limited soil

- Can we harness microbial synergies for productive, profitable, efficient, resilient agricultural systems?
- **Plant-associated fungi**
- \rightarrow support bacterial growth and diversity following drought
- → promote biotic resilience & recovery
- **Bioinformatic approaches can reveal important relationships**

DNA Stable Isotope Probing Reveals Beneficial Effects of Plant-Associated Fungi on Bacterial Communities in **Drought-Affected Soil**

Rachel Hestrin

Stockbridge School of Agriculture University of Massachusetts, Amherst rhestrin@umass.edu

Amherst

