
Big data applications in strawberry breeding

Zhen Fan, PhD, Postdoctral Associate Co-authors: Vance Whitaker, Sujeet Verma, Luis Osorio, Ronald Tapia, Cheryl Dalid Horticultural Sciences Department Gulf Coast Research and Education Center University of Florida

Categories of big data in strawberry breeding

Survey/Field data

Sensory evaluation

Field phenotyping

Gen	omics	data
	••••••	

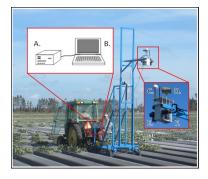
Short reads (Illumina®) Long reads (Pacbio® Hifi) SNP array

Other omics data

Transcriptome

Metabolites (Volatile)

Remote sensing data

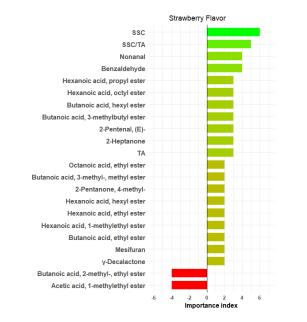

Canopy reflectance

High resolution image

Volatiles modulating eating experience

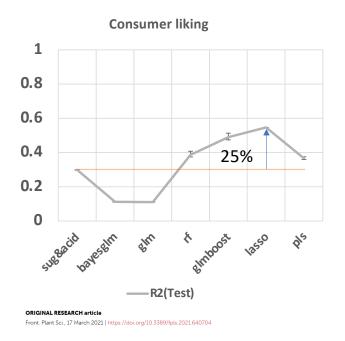
Objectives:

- Identification of volatiles important for consumer liking
- Prediction of consumer liking with metabolites data


Materials and methods:

- **154** genotype/harvest date combinations, over **15,400** sensory/liking evaluations (consumer panel)
- **213** genotype/harvest date combinations, over **2,130** sensory evaluations (descriptive panel)

Volatiles modulating eating experience



Article | Open Access | Published: 01 April 2021

Strawberry sweetness and consumer preference are enhanced by specific volatile compounds

Zhen Fan, Tomas Hasing, Timothy S. Johnson, Drake M. Garner, Michael L. Schwieterman, Christopher R. Barbey, Thomas A. Colquhoun, Charles A. Sims, Marcio F. R. Resende & Vance M. Whitaker 😂

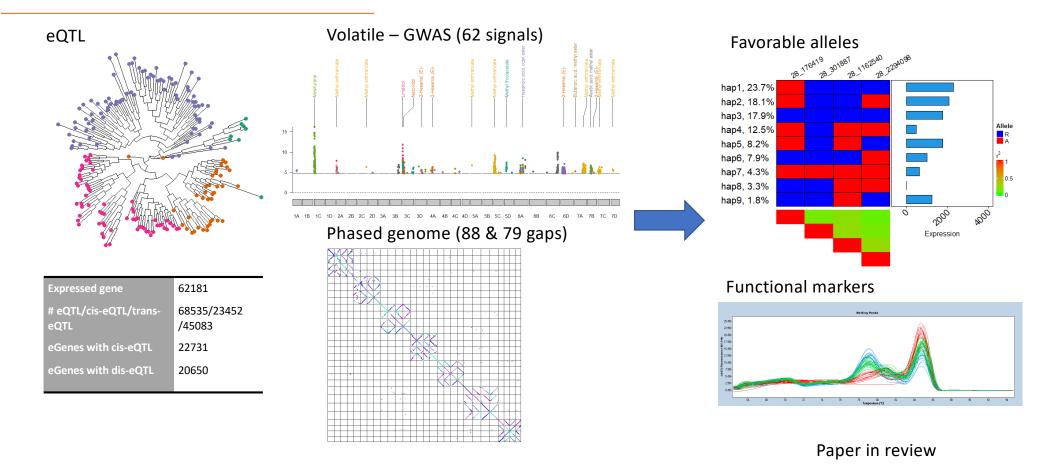
Horticulture Research 8, Article number: 66 (2021) Cite this article

Volatiles Influencing Sensory Attributes and Bayesian Modeling of the Soluble Solids–Sweetness Relationship in Strawberry

🎮 Zhen Fan¹, 🔝 Anne Plotto², 🌉 Jinhe Bai² and 🚊 Vance M. Whitaker¹¹

Discovering flavor genes and their regulatory elements

Objectives:


- Identification of **biosynthetic genes** for volatile production
- Exploration of natural variation in their regulatory regions

Materials and methods:

- RNAseq data for **196** breeding accessions
- Pacbio Hifi reads for a UF variety; short reads for parents
- Volatile quantification for a GWAS panel with over **300** individuals

RNAseq + Hifi + Volatile + SNP array

Discovering flavor genes and their regulatory elements

UF

SNP array + GS

Genomic Selection

Objectives

- 1. Predict parents from the seedling population
- 2. Predict parents from current Advanced selection trials

GS Methodology

- GP Methods: GBLUP, Bayes B, RKHS, Deep learning models
- Software: ASRemI-R, BGLR, Tensorflow
- GP Models: Additive
- GBVs: Phenotype Ranking & Selection Index

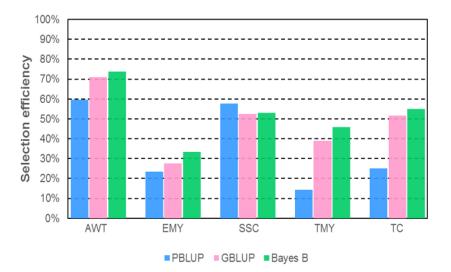
Dr. Luis Osorio

Dr. Sujeet Verma

SNP array + GS

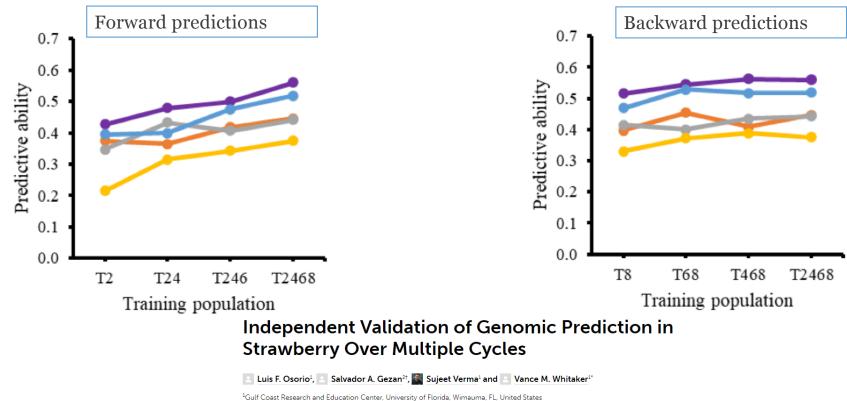
Predictive Ability

Predictive Ability: $corr(y, \hat{y})$

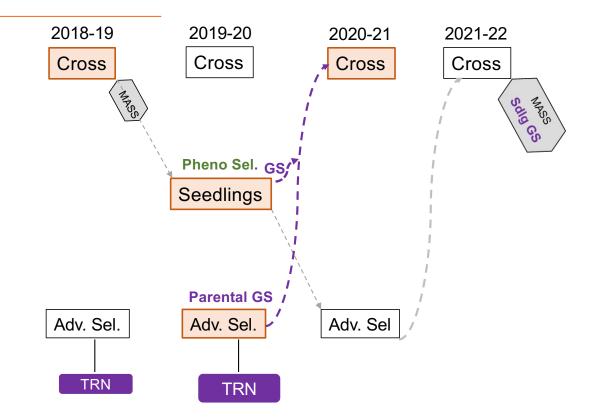

		GS Methods		
Trait	PBLUP	GBLUP	Bayes B	RKHS
AWT	0.44	0.49	0.49	0.52
SSC	0.37	0.43	0.44	0.45
EMY	0.14	0.29	0.3	0.3
TMY	0.24	0.31	0.35	0.33
ТС	0.14	0.32	0.35	0.32

An experimental validation of genomic selection in octoploid strawberry \Im

Salvador A Gezan, Luis F Osorio, Sujeet Verma, Vance M Whitaker 🕿


Horticulture Research, Volume 4, 2017, 16070, https://doi.org/10.1038/hortres.2016.70 Published: 11 January 2017 Article history ▼

Parent Selection Efficiency (PSE)


 $PSE = GG_{PRED}/GG_{TOTAL}$

Validation of GS over multiple cycles

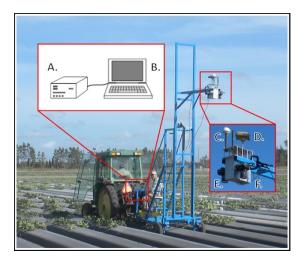
²School of Forest Resources and Conservation, University of Florida, Gainesville, FL, United States

Strawberry breeding cycles

High-resolution images

Modeling strawberry biomass and leaf area

Objectives:


 Modeling strawberry biomass and leaf area using object-based analysis of high-resolution images

Materials and methods:

- Vegetation Mobile Mapping System (VMMS) consisted of two digital cameras, a GPS and a GNSS receiver
- Total leaf area and dry biomass of the plants were measured using destructive methods.

DR. AMR ABD-ELRAHMAN

High-resolution images

UF

Modeling strawberry biomass and leaf area

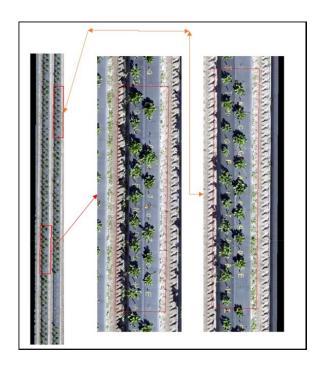
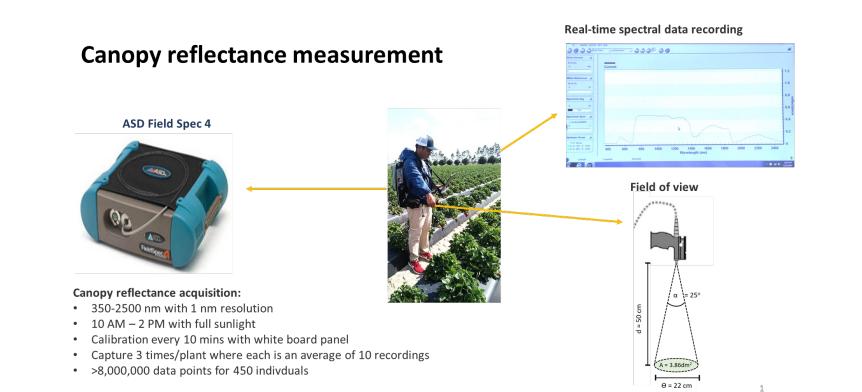


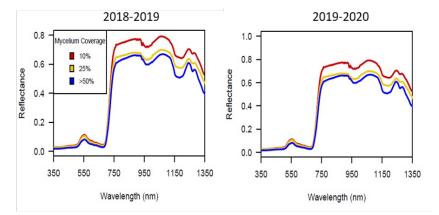
Table 8. LOOCV and ten-fold CV results for the dry biomass and leaf area models.

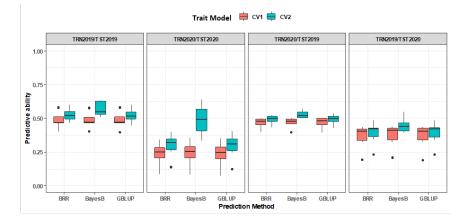

	Dry Biomass Models			Leaf Area Models		
	R ²	Cross-validation RSME (g)	Cross-validation RSME (%)	R ²	Cross-validation RSME (m ²)	Cross-validation RSME (%)
LOOCV	0.82	7.96	8.75	0.79	5.80E-02	9.28
Ten-fold CV	0.84	7.72	8.48	0.80	5.60E-02	8.96

Modeling strawberry biomass and leaf area using object-based analysis of high-resolution images

Zhen Guan ^{a, b} A 🖾, Amr Abd-Elrahman ^{a, b}, Zhen Fan ^c, Vance M. Whitaker ^c, Benjamin Wilkinson ^a

Canopy reflectance spectrometry + GS


Prediction of powdery mildew resistance in strawberry



Ronald Tapia PhD student Canopy reflectance spectrometry + SNP array

Prediction powdery mildew resistance in strawberry

Canopy-based spectral signatures of powdery mildew disease of strawberry.

PA using simple univariate method with only genomic information, and a combination of genomic and spectral data as predictors.

Combining canopy reflectance spectrometry and genome-wide prediction to increase response to selection for powdery mildew resistance in cultivated strawberry

Ronald Tapia^{1,2}, Amr Abd-Elrahman^{1,3}, Luis Osorio^{1,2}, Vance M. Whitaker^{1,2,1}, and Seonghee Lee^{1,2,1},

¹ Gulf Coast Research and Education Center, Institute of Food and Agricultural Science, University of Florida, 14625 County Road 672, Wimauma, FL 33598, USA

² Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611, USA

³ School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL 32603, USA

Acknowledgements

UF strawberry breeding lab UF strawberry molecular genetics and genomics lab Dr. Abd-Elrahman's research program Horticultural Research Laboratory, USDA-ARS, Fort Pierce UC Davis strawberry breeding lab Dr. Thomas Colouhoun's research program Dr. Charlie Sims sensory lab

Dr. Vance Whitaker

