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Categories of big data in strawberry breeding

Survey/Field data Genomics data Other omics data Remote sensing data

Sensory evaluation Short reads (lllumina®) Transcriptome Canopy reflectance

Field phenotyping Long reads (Pacbio® Hifi) Metabolites (Volatile) High resolution image
SNP array
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Volatile + Sensory m

Volatiles modulating eating experience

Objectives:
* Identification of volatiles important for consumer liking
* Prediction of consumer liking with metabolites data

Materials and methods:

* 154 genotype/harvest date combinations, over 15,400
sensory/liking evaluations (consumer panel)

» 213 genotype/harvest date combinations, over 2,130
sensory evaluations (descriptive panel)




Volatile + Sensory

Volatiles modulating eating experience
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RNAseq + Hifi + Volatile + SNP array m

Discovering flavor genes and their regulatory elements

Objectives:

* |dentification of biosynthetic genes for volatile production
* Exploration of natural variation in their regulatory regions
Materials and methods:

 RNAseq data for 196 breeding accessions

* Pacbio Hifi reads for a UF variety; short reads for parents

* Volatile quantification for a GWAS panel with over 300 individuals



RNAseq + Hifi + Volatile + SNP array

Discovering flavor genes and their regulatory elements
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SNP array + GS

Genomic Selection

Objectives

Dr. Luis Osorio Dr. Sujeet Verma

1. Predict parents from the seedling population
2. Predict parents from current Advanced
selection trials

GS Methodology

* GP Methods: GBLUP, Bayes B, RKHS, Deep learning
models

» Software: ASReml-R, BGLR, Tensorflow

* GP Models: Additive

* GBVs: Phenotype Ranking & Selection Index




SNP array + GS

Predictive Ability

Predictive Ability: corr(y,y)

AWT 0.44 0.49 0.49 0.52
SSC 0.37 0.43 0.44 0.45

EMY 0.14 0.29 0.3 0.3
T™MY 0.24 0.31 0.35 0.33
TC 0.14 0.32 0.35 0.32

An experimental validation of genomic selection in
octoploid strawberry 3

Salvador A Gezan, Luis F Osorio, Sujeet Verma, Vance M Whitaker

Horticulture Research, Volume 4, 2017, 16070, https://doi.org/10.1038/hortres.2016.70
Published: 11 January 2017 Article history v
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SNP array + GS

Validation of GS over multiple cycles
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Independent Validation of Genomic Prediction in
Strawberry Over Multiple Cycles
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SNP array + GS + MASS

Strawberry breeding cycles
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High-resolution images

Modeling strawberry biomass and leaf area

Objectives:

* Modeling strawberry biomass and leaf area
using object-based analysis of high-resolution
images

DR. AMR ABD-ELRAHMAN

Materials and methods:

* \Vegetation Mobile Mapping System (VMMS)
consisted of two digital cameras, a GPS and a |
GNSS receiver :

» Total leaf area and dry biomass of the plants
were measured using destructive methods.




High-resolution images m

Modeling strawberry biomass and leaf area

Table 8. LOOCYV and ten-fold CV results for the dry biomass and leaf area models.

Dry Biomass Models Leaf Area Models

R*> Cross-validation Cross-validation R? Cross-validation Cross-validation

RSME (g) RSME (%) RSME (m?) RSME (%)
LOOCV  0.82 7.96 8.75 0.79 5.80E-02 9.28
Ten-fold 084 7.72 8.48 0.80 5.60E-02 8.96

Modeling strawberry biomass and leaf area using
object-based analysis of high-resolution images

Zhen Guan *® & &, Amr Abd-Elrahman * ®, Zhen Fan €, Vance M. Whitaker ¢, Benjamin Wilkinson 2



Canopy reflectance spectrometry + GS m

Prediction of powdery mildew resistance in strawberry

Real-time spectral data recording

Canopy reflectance measurement e =
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Canopy reflectance spectrometry + SNP array

Prediction powdery mildew resistance in strawberry
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Combining canopy reflectance spectrometry and
genome-wide prediction to increase response to selection
for powdery mildew resistance in cultivated strawberry

Ronald Tapia'?, Amr Abd-Elrahman'?, Luis Osorio'2, Vance M. Whi 120 and Seonghee Lee'2"(®

' Gulf Coast Research and Education Center, Institute of Food and Agricultural Science, University of Florida, 14625 County Road 672,

Wimauma, FL 33598, USA
2 Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611, USA
# School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL 32603, USA

GBi up MlR BayleSB GBIiUP
Prediction Method

BRR BayesB GBLUP

PA using simple univariate method with only genomic information, and
a combination of genomic and spectral data as predictors.
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