COMBINING TWO ANALYTICAL TECHNIQUES WITH CHEMOMETRIC ANALYSIS TO CHARACTERIZE WINE BY VINEYARD, REGION, AND VINTAGE

ALEXANDRA CROOK UNIVERSITY OF NEBRASKA – LINCOLN

A YEAR IN THE LIFE OF WINE

Growth	Mashing	Fermentation	Aging	Bottling
Location, region, soil type, and climate	Growth product is mashed into a paste and cooked	Combined with yeast	Alcohol left to age in oak barrels	Bottled and/or blended for sale
	Starch \rightarrow sugar	Yeast + sugar \rightarrow ethanol		

A YEAR IN THE LIFE OF WINE

- Wine grapes (Vitis vinifera L.'Pinot noir' clone 667) from 15 different vineyard sites along the Pacific Coast of the United States
- Grapes were harvested at a similar sugar concentration
 - between 13 August to 15 September 2015 and between 25 August to 21 September 2016
- All wine were developed by the Runnebaum lab at UC Davis

EXPERIMENTAL DESIGN

Wine was developed and produced by the Runnebaum lab at UC Davis and the Differential Sensing data was collected by the Anslyn lab at UT Austin

VINEYARDS, REGIONS, AND VINTAGES

τ

	20	15	2016			
VINEYARD	CODE	REGION	n(a)	n(r)	n(a)	n(r)
Nielson	NN	Santa Maria Valley	8	16	8	16
Rice/Cambria	RE	Santa Maria Valley	8	10	8	10
Radian	RN	Santa Rita Hills	8	8	8	8
Panorama 5A	P5A	Arroyo Seco	8	16	8	16
Panorama MSA	PMSA	Arroyo Seco	8	10	8	10
Annapolis	AS	Sonoma Coast	8	16	8	16
Cloud Landing	CL	Sonoma Coast	8	10	8	10
Carneros Hills West	CHW	Sonoma Carneros	6	6	8	8
Ross	RS	Sonoma RRV	8		8	
Bones	BS	Sonoma RRV	7	23	8	24
Bloomfield	BD	Sonoma RRV	8		8	
Boone Ridge	BE	Anderson Valley	7	15	8	16
Maggy Hawk/Falk	MHF	Anderson Valley	8	15	8	10
Gran Moraine	GM	Willimette Valley	8	16	8	16
Zena West	ZW	Willimette Valley	8	10	8	TO

EXPERIMENTAL DESIGN - CLASSIFICATION

MULTIVARIATE ANALYSIS

- MVAPACK was utilized for multivariate analysis
 - Raw NMR data was loaded in and processed completely through model validation
 - The DS assay data was uploaded and processed in parallel
 - The two dataset were combined in a multiblock analysis to give equal weight to each technique

Image from Worley et al. ACS Chem. Biol. 2014, 9, 5, 1138–1144

EXPERIMENTAL DESIGN - CLASSIFICATION

FEATURE ANALYSIS

- MetaboAnalyst is an online chemometrics tools that was utilized for feature analysis
 - Random Forest (RF) was used to test the classification strength of the data based on vineyard, region, and vintage
 - RF was preformed with 500 trees and 7 predictors
 - Out of Bag Error (OOB) used to obtain unbiased estimate of classification error

OOB 0.08

	Control	Patient	Class Error
Control	25	0	0.00
Patient	4	21	0.16

EXPERIMENTAL DESIGN - CLASSIFICATION

FEATURE ANALYSIS

- MetaboAnalyst is an online chemometrics tools that was utilized for feature analysis
 - ROC Curve Analysis was used to test classification strength and identify important features in each classification

Images provided by Metaboanalyst: Xia, J et al. Nucleic Acids Res. 43, W251-W257 (2015).

VINEYARD CLASSIFICATION

FIFTEEN VITIS VINIFERA L. 'PINOT NOIR' WINES DERIVED FROM THE SAME SCION CLONE (PINOT NOIR 667)

OUR GOAL WAS TO UTILIZE TWO DISTINCT ANALYTICAL TECHNIQUES TO IMPROVE THE CLASSIFICATION BASED ON VINEYARD SPECIFIC CHARACTERISTICS

2015 VINEYARD DATA

- PCA analysis was carried out on NMR and Assay data separately
- Combined PCA components used to generate multiblock analysis
- LDA models were _ generated for models with 4 components

2016 VINEYARD DATA

- PCA analysis was carried out on NMR and Assay data separately
- Combined PCA components used to generate multiblock analysis
- LDA models were generated for models with 4 components

COMBINED NMR+ASSAY DATA IMPROVES VINEYARD CLASSIFICATION

Sample Name		(Random Forest Classification								
Sample Na		NMR	Assay	NMR+Assay	NMR	Assay	NMR+Assay				
			015 Vineyard		2016 Vineyard						
Nielson	NN	0.88	1.00	1.00	1.00	0.75	1.00				
Rice/Cambria	RE	1.00	0.88	1.00	0.88	0.88	1.00				
Radian	RN	0.75	0.88	0.88	1.00	1.00	1.00				
Panorama 5A	P5A	0.63	1.00	0.88	1.00	0.88	1.00				
Panorama MSA	PMSA	0.75	0.88	1.00	0.88	0.88	0.88				
Annapolis	AS	1.00	0.88	1.00	1.00	1.00	1.00				
Cloud Landing	CL	0.75	1.00	1.00	1.00	0.75	1.00				
Carneros Hills West	CHW	1.00	1.00	1.00	0.88	0.50	0.88				
Ross	RS	1.00	0.75	1.00	1.00	0.75	1.00				
Bones	BS	1.00	0.86	1.00	1.00	0.75	1.00				
Bloomfield	BD	1.00	1.00	1.00	1.00	1.00	1.00				
Boone Ridge	BE	0.86	0.86	0.86	1.00	0.75	1.00				
Maggy Hawk/Falk	MHF	0.88	1.00	1.00	1.00	1.00	1.00				
Gran Moraine	GM	1.00	1.00	1.00	1.00	1.00	1.00				
Zena West	ZW	1.00	0.88	1.00	1.00	0.63	1.00				
		0.90 ±0.12	0.92 ±0.08	0.97 ±0.05	0.98 ±0.05	0.83 ±0.15	0.98 ±0.04				

Random Forrest

COMBINED NMR+ASSAY DATA IMPROVES VINEYARD CLASSIFICATION

ROC Curve

Sample Name		NMR+Assay ROC								
		AUC	NMR Ratio	Assay Ratio		AUC	NMR Ratio	Assay Ratio		
			2015 Vineyard			2016 Vineyard				
Nielson	NN	0.95	0.93 (0.07)	0.07 (0.04)		0.97	0.87 (0.06)	0.13 (0.07)		
Rice/Cambria	RE	0.98	0.73 (0.05)	0.27 (0.15)		0.96	0.72 (0.09)	0.28 (0.26)		
Radian	RN	0.91	0.4 (0.05)	0.6 (0.56)		0.95	0.64 (0.08)	0.36 (0.33)		
Panorama 5A	P5A	0.81	0.88 (0.1)	0.12 (0.11)		0.95	0.47 (0.03)	0.53 (0.3)		
Panorama MSA	PMSA	0.98	1 (0.07)	0 (0)		0.95	0.4 (0.03)	0.6 (0.33)		
Annapolis	AS	0.98	0.68 (0.08)	0.32 (0.3)		0.97	0.67 (0.05)	0.33 (0.19)		
Cloud Landing	CL	0.99	0.2 (0.01)	0.8 (0.44)		0.96	0.84 (0.1)	0.16 (0.15)		
Carneros Hills West	CHW	0.92	0.64 (0.08)	0.36 (0.33)		0.99	0.73 (0.05)	0.27 (0.15)		
Ross	RS	0.99	0.93 (0.07)	0.07 (0.04)		1.00	1 (0.07)	0 (0)		
Bones	BS	0.98	0.52 (0.06)	0.48 (0.44)		0.96	0.88 (0.1)	0.12 (0.11)		
Bloomfield	BD	0.99	0.67 (0.05)	0.33 (0.19)		0.99	0.4 (0.02)	0.6 (0.22)		
Boone Ridge	BE	0.94	0.92 (0.11)	0.08 (0.07)		1.00	0.87 (0.06)	0.13 (0.07)		
Maggy Hawk/Falk	MHF	0.94	0.64 (0.08)	0.36 (0.33)		0.97	0.72 (0.09)	0.28 (0.26)		
Gran Moraine	GM	0.99	0.8 (0.06)	0.2 (0.11)		0.99	0.8 (0.04)	0.2 (0.07)		
Zena West	ZW	0.95	0.32 (0.04)	0.68 (0.63)		0.99	1 (0.07)	0 (0)		

REGION CLASSIFICATION

FIFTEEN VITIS VINIFERA L. 'PINOT NOIR' WINES DERIVED FROM THE SAME SCION CLONE (PINOT NOIR 667)

OUR GOAL WAS TO UTILIZE TWO DISTINCT ANALYTICAL TECHNIQUES TO IMPROVE THE CLASSIFICATION BASED ON REGION SPECIFIC CHARACTERISTICS

2015 VINEYARD DATA

2016 VINEYARD DATA

COMBINED TECHNIQUES PROVIDE IMPROVED CLASSIFICATION BY **REGION OF GROWTH**

Sample Name		Random Forest Classification							
		Assay	NMR+Assay	NMR	Assay	NMR+Assay			
		2015 Regior	1		2016 Regior	ı			
NN,RE	1.00	0.94	1.00	0.94	1.00	1.00			
RN	0.63	0.63	0.88	1.00	0.75	1.00			
P5A,PMSA	0.94	1.00	0.94	1.00	0.94	1.00			
AS,CL	0.81	0.81	1.00	1.00	0.88	1.00			
CHW	0.83	0.83	1.00	0.88	0.50	0.88			
RS,BS,BD	1.00	0.78	1.00	1.00	0.83	1.00			
BE,MHF	0.93	0.87	0.93	1.00	0.75	1.00			
GM,ZW	1.00	0.94	1.00	1.00	0.69	1.00			
	Name NN,RE RN P5A,PMSA AS,CL CHW RS,BS,BD BE,MHF GM,ZW	Name NMR NN,RE 1.00 RN 0.63 P5A,PMSA 0.94 AS,CL 0.81 CHW 0.83 RS,BS,BD 1.00 BE,MHF 0.93 GM,ZW 1.00	NAme NMR Assay 2015 Region NN,RE 1.00 0.94 RN 0.63 0.63 P5A,PMSA 0.94 1.00 AS,CL 0.81 0.81 CHW 0.83 0.83 BE,MHF 0.93 0.87 GM,ZW 1.00 0.94	Name Random Fores NMR Assay NMR+Assay 2015 Region NN,RE 1.00 0.94 1.00 RN 0.63 0.63 0.88 P5A,PMSA 0.94 1.00 0.94 AS,CL 0.81 0.81 1.00 CHW 0.83 0.83 1.00 BE,MHF 0.93 0.87 0.93 GM,ZW 1.00 0.94 1.00	Name Random Forest Classification NMR Assay NMR+Assay NMR 2015 Region NMR NMR NN,RE 1.00 0.94 1.00 0.94 RN 0.63 0.63 0.88 1.00 P5A,PMSA 0.94 1.00 0.94 1.00 AS,CL 0.81 0.81 1.00 1.00 CHW 0.83 0.83 1.00 0.88 RS,BS,BD 1.00 0.78 1.00 1.00 BE,MHF 0.93 0.87 0.93 1.00 GM,ZW 1.00 0.94 1.00 1.00	Name NMR Assay NMR+Assay NMR Assay NN,RE 1.00 0.94 1.00 0.94 1.00 RN 0.63 0.63 0.88 1.00 0.94 P5A,PMSA 0.94 1.00 0.94 1.00 0.94 AS,CL 0.81 0.81 1.00 0.88 0.50 CHW 0.83 0.87 1.00 0.88 0.50 BE,MHF 0.93 0.87 0.93 1.00 0.75 GM,ZW 1.00 0.94 1.00 0.94 0.94			

 0.89 ± 0.12 0.85 ± 0.11 0.97 ± 0.04 0.98 ± 0.04 0.79 ± 0.15 0.98 ± 0.04

Sample Name		NMR+Assay ROC							
		NMR	Assay	NMR+Assay		NMR	Assay	NMR+Assay	
			2015 Region				2016 Region		
Santa Maria Valley	NN,RE	0.97	0.93 (0.07)	0.07 (0.04)		0.99	0.8 (0.04)	0.2 (0.07)	
Santa Rita Hills	RN	0.91	0.36 (0.04)	0.64 (0.59)		0.93	0.8 (0.06)	0.2 (0.11)	
Arroyo Seco	P5A,PMSA	0.93	0.72 (0.09)	0.28 (0.26)		0.98	0.9 (0.04)	0.1 (0.04)	
Sonoma Coast	AS,CL	0.96	0.6 (0.03)	0.4 (0.15)		0.99	0.67 (0.05)	0.33 (0.19)	
Sonoma Carneros	CHW	0.87	0.53 (0.04)	0.4 (0.22)		0.99	0.8 (0.06)	0.2 (0.11)	
Sonoma RRV	RS,BS,BD	0.99	0.87 (0.06)	0.13 (0.07)		0.98	1 (0.05)	0 (0)	
Anderson Valley	BE, MHF	0.96	0.73 (0.05)	0.27 (0.15)		0.99	1 (0.05)	0 (0)	
Willimette Valley	GM,ZW	0.99	0.8 (0.04)	0.2 (0.07)		0.98	0.73 (0.05)	0.27 (0.15)	

ROC ANALYSIS AND FEATURE SELECTION FREQUENCY

- NMR feature usage from all the ROC curves is plotted using an NMR bin (ppm) size of 0.1 ppm for (C) vineyard and (D) region analysis.
- 2015 data are colored blue, and the 2016 data is colored red.
- A plot of the DS array feature (MM1 to MM9) usage from the same ROC curve analyses are displayed as an insert
- Putative metabolite IDs correspond to 1, isobutanol;
 2, malic acid; 3, phenethyl alcohol; 4, mannitol; 5, fructose; 6, ethyl acetate; 7, ethyl lactate; 8, tyrosine; and 9, citric acid.

VINTAGE YEAR COMPARISONS

ROC Curve Analysis demonstrated 88.5% AUC with a model containing 25 features

16% Assay Contribution 84% NMR Contribution

COMBINATION OF NMR AND COLORIMETRIC SENSOR FINGERPRINTING IMPROVES WINE CLASSIFICATION

ACKNOWLEDGMENTS

A special thank you to our collaborates Dr. Eric Anslyn and Dr. Diana Zamora-Olivares at the University of Texas Austin

And the students in the Freshmen Research Initiative at the University of Texas at Austin

Special thank you to Dr. Ron Runnebaum at UC Davis as well

