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¢ It uses a convolutional neural network to classify the
reflectance spectra at individual pixels as either stressed or
unstressed to determine the temporal propagation of stress in
the plant using hyperspectral imagery.
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and the percentage of the plant under stress as computed by ® ®

HyperstressPropagateNet ona given day demonstrates its Fig. 5: Reflectance spectra generated at random pixels of a (a) controlled

efficacy. Fig. 2: Spectral band difference based segmentation. plant; and (b) stressed plant,

* Two bands of specific wavelengths that have significant contrast in

The algorithm h to 1llustrate the t 1 . . ; .
¢ algorithm has been used to 1llustrate the tempora intensity are first identified (a-b).

propagation of stress both qualitatively and quantitatively. oo 100
HyperStressPropagateNet has been evaluated on a dataset of * They are enhanced by multiplying a constant factor (c-d) and finally EE - T
image sequences of cotton plants captured in a high throughput subtracted from each other to 1solate the plant pixels, 1.e., the foreground = o z oe
plant phenotyping platform. (), < o 2 -
The algorithm may be generalized to any plant species to study % The enhanced foreground image is then binarized using Otsu's automatic L-mgedd_ o ;h;;ﬁ,d o o RE - d 68 10
the effect of abiotic stresses on sustainable agriculture thresholding technique to generate a binary mask for the plant (f). e ®
practices. . . . . , .
*¢» The binary mask 1s used to segment the plant in all bands of a Fig. 6: Performance metrics for HyperStressPropagateNet: (a)
hyperspectral cube for subsequent analysis. confusion matrix; and (b) precision-recall curve.
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LemnaTec Gmbh, Aachen, Germany). Representation Learning Classification - i
Plants were randomly divided into two groups of 10 Fig. 3: CNN-based deep learning architectl.lre for classification of stressed Fig. 7: (2) SWC (%) for the control and the two dry-down groups (DD1, Plant A and
corresponding to the two experimental groups (i.e., and unstressed pixels. DD2, Plant B); and (b) stress pixel (%) over days since DD1 for the same plants.

Experiments 1 and 2).

** 1D CNN 1s used to classify the reflectance spectra into two classes, 1.¢.,

Each experimental group was further split into two groups of 5
stressed and unstressed.

plants and assigned to treatment groups (control and drought

stress). : : :
) s These convolutional layers learn from the representation learning

In Experiment 1, dry-down (DD1) was initiated 12 days after component.

th t of plant 1 ' d lasted for 8 days.
© ONSEL Ol plant Inagihg and fdsted 106 days » The goal of representation learning is to learn the different features in the

convolution layers and then use them in the subsequent dense layers for

A week later, a similar dry-down (DD2) was 1nitiated for the , ,
the final classification.

second experimental group and lasted for 9 days.
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Fig. 8: Illustration of qualitative and quantitative temporal propagation of
stress using Plant A (DD1 group) and Plant B (DD2 group).
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A hyperspectral image can be represented by a three-dimensional
array of intensities, H(x,y,A), where (x,y) represents the location of
a pixel and A denotes the wavelength.

——Training Accuracy

Validation Aceuracy s Pixels classified as stressed and unstressed are shown in red and
green, respectively.
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It 1s, thus, often referred to as a hyperspectral cube. EI(}aJ h Elzcbgh ¢ The percentage of stressed pixels to the total plant pixels are shown
at the top-left corner of each image.
Intensity information at a specific location for all wavelengths can
be represented by a spectral reflectance curve. Fig. 4: (a) Training and validation loss vs number of epochs; and (b) training ¢ The study shows a high correlation between the SWC and the
and validation accuracy vs number of epochs. percentage of stress pixels in the plants.

¢ The total number of epochs used during training is 30.
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